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1 Introduction 

The solution to vacuum general relativity with a cosmological constant 12- is de Sitter 

space and this constant and solution have often been invoked to reconcile theory with 

observation. Originally Einstein believed the universe to be static and introduced a 

constant A-term into his field equations to cancel the expansionary behaviour found 

when A = 0.’ Some decades later the steady state scenario based on de Sitter space 

was developed because observations of Hubble’s constant suggested the Earth was 

older than the universe itself.’ More recently the inflationary scenario has been pro- 

posed to solve some of the problems of the hot, big bang mode1.3 During inflation the 

potential energy of a quantum scalar field dominates the energy-momentum tensor 

and behaves as a cosmological constant for a finite time. 

Realistic inflationary models predict that the current value of the density param- 

eter, 00, should be very close to unity.4 There are a number of problems associated 

with the (A = 0,R = 1) universe which can be resolved if A # 0. Firstly, its age 

is to = 6.52/r-’ Gyr, where h is the current expansion rate in units of 160 km set-’ 

Mpc-‘. This is very close to the age of the oldest globular clusters in the galaxy, 

tot = (13 - 15) f 3 Gyr, if h 2 0.6 as suggested by some observationss If A # 0, 

however, the expansion rate is increased and to may exceed too if Cl,..,,, zz 0.K6 

Moreover, most dynamical determinations of Re suggest 00 = 0.2fO.l up to scales 30 

Vpc and the apparent inconsistency with inflation is again resolved if Q,,,, z 0.8.; 

Finally, the introduction of vacuum energy into the standard cold dark matter model 

of galaxy formation accounts for the extra large-scale clustering observed in galaxy 

surveys.* 

Hence, there are a number of reasons for supposing that a cosmological constant 

may be influential at the present epoch.g This work investigates whether the potential 

energy that drove the inflationary expansion could be such a term. This has been 

investigated previously within the context of general relativity by Peebles and Ratra,‘O 

but their models required the form of the potential to change drastically at various 

epochs and therefore suffered from an element of ad-hoc fine-tuning. If the potential 

isrelevant at the current epoch, it must either have a minimum at V # 0 or contain a 
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non-vanishing decaying tail. Although the first possibility is not ruled out, it requires 

severe fine-tuning, so we focus on the second. This implies that thermalization of 

the false vacuum will not proceed via rapid oscillations of the scalar field about some 

global minimum and the form of the potential must change at various epochs. In 

general relativity the potential must be sufficiently flat for the strong energy condition 

to be initially violated, but must then become steep enough for reheating to proceed. 

But the energy density of the field must redshift at a slower rate than the ordinary 

matter components at late times if the vacuum energy is to once more dominate the 

dynamics.” 

Instead of altering the shape of the potential we extend the gravitational sector of 

the theory beyond general relativity and investigate whether inflation was driven by 

potentials which are (a) too steep to lead to inflation in general relativity and (b) do 

not contain a global minimum. We shall refer to these as steep potentials. A number 

of unified field theories lead to scalar field potentials which exhibit both of these 

characteristics. The mechanism leading to inflation is very simple. In pure Einstein 

gravity containing a single, minimally coupled scalar inflaton field, O, the strong 

energy condition is violated if the condition-&* < V holds, i.e. the potential energy 

dominates over the field’s kinetic energy. Clearly this condition must break down 

at some point as steeper potentials are considered. But a finite interval of inflation 

is possible with steep potentials if one introduces a viscosity into the inflaton field 

equation which decays as the universe expands. This viscosity slows the field down 

and can lead to inflation. As the viscosity becomes weaker, however, the inflaton’s 

kinetic energy increases significantly and a natural exit from inflation proceeds as the 

expansion becomes subluminal. We identify the dilaton field which arises in scalar- 

tensor theories as the natural source of this viscosity. 

This paper is organised as follows. We survey theories that lead to inflation with 

steep potentials in section 2. In section 3 we derive expressions for the amplitudes of 

the primordial fluctuation spectra and discuss the most stringent observational con- 

straints which any viable model of this type must satisfy; These-limits arise from the 

observations of large-scale galactic structure,” anisotropies in the cosmic microwave 

background radiation (CMBR);y2 nucleosynthesis calculations’4J5 add time-delay ex- 
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periments in the solar system. r6 Numerical results for both decaying power law and 

exponential potentials are presented in section 4 and we conclude that successful infla- 

tion based on this mechanism is unlikely for the examples considered. Some possible 

implications of this conclusion are discussed in section 5. Unless otherwise stated, 

units are chosen such that c = h. = 1, and the present day value of the Planck mass 

is normalized to mpr = 1. 

2 Inflation with steep potentials 

2.1 Scalar-Tensor theories 

A suitable source of the viscosity is the dilaton field which arises in the Bergmann- 

Wagoner class of theories. i’ This field plays the role of a time-dependent gravitational 

constant. The field equations for these scalar-tensor theories are derived by varying 

the action 

s = J&&i [hi - $,q2 - u&j i 167r (;(vc+ + V(D) + smatter)] , 

(2.1) 

where g = detg,,“, R is the Ricci scalar, h($) is some arbitrary function of the 

dilaton +, V($) is the dilaton self-interaction and Cmattel is the Lagrangian of a 

perfect baryotropic fluid, which we assume to be relativistic matter with an effective 

equation of state p, = p,/3. The dilaton and inflaton field equations are coupled 

and the extra viscosity on u is due to the dynamical evolution of the effective Planck 

mass in the theory. The strength of gravity is determined by the magnitude of h($) 

and a fraction of the inflaton’s potential energy is converted into the dilaton’s kinetic 

energy rather than contributing to $. 

It is well known that theories of this type appear as the low energy limits to 

a number of unified field theories and can be expressed in the Jordan-Brans-Dicke 

(JBD) form with a variable w-parameter by defining a new scalar field \E E h($).‘s 



The action (2.1) becomes 

s=/d’rfi~i +‘Q)’ - IT+!) - 16s (;(Vo)’ + V(o) + LCmatter 
)I 

(2.2) 

where 

(2.3) 

The theory of general relativity is recovered whenever a turning point exists in the 

functional form of h($) (see section 3.3), because w(Q) tends to infinity and the 

dilaton’s kinetic energy decouples. Although the theories (2.1) and (2.2) are equiva- 

lent mathematically, there is a philosophical difference which arises in deciding which 

function h($) or w(a) should be treated as the fundamental quantity.rg In general, if 

we consider a simple form for h($) such as a truncated Taylor series, this leads to a 

very complicated form for w( @) and vice-versa. 

For example we can expand h($) as some power series 

h(G) = 2 OCi@ 
i=o 

(2.4) 

for arbitrary constant coefficientsai. To lowest order h($) sz as, but this corresponds 

to a ‘constant’ gravitational constant and is not interesting. Moreover the linear 

term may always be eliminated by a simple field redefinition, so the lowest order of 

interest is the quadratic contribution and this is simply the standard JBD theory 

with constant w(e). In principle, given suitable initial conditions,~inflation will then 

occur as o slowly rolls down its potential causing 1/, to increase. Eventually higher- 

order (r > 2) terms in the expansion (2.4~) will become important and for appropriate 

choices of ai, such as as > 0 and os < 0, one can easily arrange for a local maximum 

in h($) to exist at some value .$ = $0. At this point the theory will be identical 

to general relativity if we normalise h(&) = 1. It is clear that as $J approaches Qc, 

inflation will end because the gravitational friction weakens and the irmaton speeds 
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up. This model is a chaotic version of the hyperextended scenario and proceeds via 

a second-order phase transition.rs 

Another possibility is the induced theory of gravity where h($) is quadratic but 

the dilaton potential is non-vanishing and contains a global minimum at tie. Inflation 

driven by o could occur if G is initially displaced from $0, but will clearly end as 

Einstein gravity is recovered and the dilaton settles into this minimum. After spon- 

taneous compactification to four-dimensions, some Kaluza-Klein theories have this 

structure, where the dilaton is identified as the logarithm of the radius of the internal 

space. *’ If monopole and Casimir effects due to non-trivial field configurations are 

also considered, a classically stable ground state is possible at $o.*~ 

Theories (2.1) and (2.2) are conformally equivalent to general relativity with a 

matter sector containing two interacting scalar fields.” By redefining the graviton 

and dilaton fields as 

iip” = f129,“, R2 E ZK%( 1/)) (2.5) 

and 

where ,2 = Srm$, the action (2.1) for U($) = 0 may be rewritten in the Einstein- 

Hilbert form 

s = Jd4zfi & - ;(Vq2 - ;A(@)(~o)~ - C(qV(o)] , 
[- 

(2.7) 

where 

A-*(Q) c R2 = 2dh($), C(@) E A2(Q) (2.8) 

and we assume that {h, dh/dQ} > 0 for consistency. The viscosity appears through 

the. non-standard coupling, A(@), of the @-field to the inflaton’s kinetic term. This 

coupling evolves towards unity as @ settles into a minimum of the effective poten- 

tial C(@)V(u), thus causing the accelerated expansion to end. In principle one can 
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therefore realise this scenario in general relativity if the matter sector of the the- 

ory is modified in an appropriate fashion. Some higher-dimensional, higher-order 

gravity theories exhibit this conformal structure upon compactification of the extra 

dimensions.23 

In the following discussions we refer to g,,” as the Jordan-Bran+Dicke (JBD) 

frame and &,” as the Einstein-Hilbert (EH) frame. In the former it is the matter 

contributions which are canonical, whereas gravity is canonical in the latter. The 

evolution of the Planck mass in the JBD frame is translated into a time-dependence 

for gauge and Yukawa couplings in the EH frame.24 

2.2 Field Equations 

Extremizing the action (2.2) with respect to arbitrary variations of the metric pro- 

duces the gravitational field equations 

Rfly - ;gJ2 = -$; - ;Tpu - WC*‘) 
7 

- (2.9) 

where 0 m gp”V,V, and the energy-momentum tensor Tpy is defined as the func- 

tional derivative of the matter lagrangian including the inflaton field.25 To proceed we 

assume a space-time with isotropic and homogeneous spatial sections (the Friedmann- 

Robertson-Walker universes) where the fields are functions of cosmic time only. In 

this case minimising (2.2) with respect to variations in u and Q leads to the equations 

ii+sH&= 2E 
da 

(2.10) 

and 

.&(;+,,;) -+2+tk;+$, (2.11) 

respectively. Combining Eq. (2.11) with the trace of (2.9) we arrive at the dilaton 

field equation 

(2w + 3) (4 + 3H!%) = 2u - *g - $42 + 3*T, (2.12) 
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where T = plOt~+nl - 3~~~~~1 is the trace of TPY. Finally, the time-time component of 

(2.9) gives the Friedmann equation 

+~~-3H~+~(~~2+~(o)+p,). (2.13) 

where k = - 1, 0, +l determines the spatial curvature. 

It is necessary to reheat the universe shortly after the expansion has become 

subluminal. The couplings of the inflaton to other relativistic matter fields should 

then become important because the potential is steep. However, reheating in these 

theories is difficult to model so we follow Morikawa & Sasakiz6 by introducing a 

phenomenological dissipation term into the field equations. It was shown that for an 

exponential inflaton potential and a Yukawa type coupling the inflaton field equation 

(2.10) becomes*’ 

6+3H&=-dV-&j 
do “’ 

(2.14) 

where to zeroth order the dissipation 

is proportional to the effective mass of the inflaton and f = 0( 1). This form for CL 

should be appropriate for any steep potential. The Bianchi identity V,T“” m 0 then 

implies that 

pr = -4Hp, + C,,ir2, (2.16) 

where pr is the energy density of relativistic particles. The decay product must lead 

to baryogenesis, and we assume the reheat temperature is significantly larger than its 

rest mass, mx. We may then treat it as a relativistic fluid in local thermodynamic 

equilibrium. Once the inflaton’s effective mass falls below nx the dissipation becomes 

negligible. 



2.3 Change of Independent Variable 

Numerical solutions must be found which trace the evolution of the universe from the 

Planck time to the current epoch. This corresponds to some 60 orders of magnitude 

in the independent variable. The codes used to produce these solutions become inef- 

ficient when integrating over more than 15 orders of magnitude. Therefore a change 

of independent variable was used to speed up the process of generating solutions. 

The number of e-foldings N = In a was used as the new independent variable since 

this is clearly a monotonically varying function for expanding universes. From the 

relation H = &/a = d(lna)/dt it can be seen that dt = dN/H. Hence for a variable 

z(t) we must make the substitutions: C+ -+ Hz’ and if -+ H*x”+HH’x’ where a prime 

denotes differentiation with respect to N. We now have the following equations for 

I; = 0: 

(2.17) 

P: + pp -‘HC,d2 = 0 (2.18) 

and 

HZ= [;;+$,,+,,] (2.21) 

We now need an extra equation to calculate H’. 

and substituting for (4 + 3H4) from (2.1’2) leaving 

This is found by taking (2.11) 

6ti+12H2 = l- 
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+ =(2U+8a(4V(a)-62))-,(;)2, (2.22) 
2w+3@ 

or converting to independent variable. N: 

)( 

H2&4’1)2 dU 
drk rE +drk 

+ ;&; (2U + 87r (4V(o) - H20R)) 

- H*w (2.23) 

Defining y = U’ and z = Q’ we obtain a set of first order, ordinary differential 

equations which can be integrated given initial conditions on {t, p?, CJ, d, e, Q’} at 

some initial N = Ni. When certain slowroll conditions, such as $ < Hlf! and 

(r* < V are valid, this coordinate transformation will simplify any analytical approach 

considerably. 

Before proceeding to solve these equations for specific inflaton potentials, we shall 

investigate the most important observational constraints that any successful scenario 

of this type must satisfy. We present a detailed discussion of how such limits arise 

since they will always be relevant in any future analysis. 

3 Constraints from the CMBR, nucleosynthesis 
and the solar system 

3.1 Amplitudes of scalar and tensor perturbations in the 
conformal frame 

The purpose of this section is to derive the general formulae for the amplitude of 

density fluctuations which arise in models based on theory (2.1) and then discuss the 

constraints which any scalar-tensor scenario based on a steep potential must satisfy. 
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We generalize the calculation of Berkin and Maeda’s by considering an arbitrary 

functional form for h($) or equivalently for U(Q). If one wishes to employ Bardeen’szg 

analysis for the evolution of super-horizon sized perturbations, it is necessary for 

consistency to perform the calculation in the EH frame where the Planck mass is 

truly constant. To proceed analytically, however, it is also necessary to assume certain 

‘slow-roll’ approximations for the two fields and ignore all quadratic first-derivative 

and linear second-derivative terms in the field equations. The full equations derived 

from theory (2.7) were presented in Ref. 30 and for slowly rolling fields they reduce 

to 

I?2 z ;cv 

3fid,@ x -c*v 

3fid,,a = -A& 

(3.1) 

(3.2) 

(3.3) 

wheresubscripts Q and u denote differentiation with respect to @J and (T respectively, 

d, s d/dq, ‘7 = Jdtn(t) denotes cosmic time in the conformal picture and tildes refer 

to quantities defined in the EH frame. In general, the total energy density of the 

system is defined by 

6 z ;(d,@)2 + ;A(d,lr)2 + A2V. (3.4) 

and the expression for the density spectrum can be found by extending the results 

of Lyth3r to the case of two interacting scalar fields. If we denote by 11, and m the 

times a perturbation leaves and re-enters the horizon in the EH frame, then 

[Cl +dj, = [(1 ++f-1, (3.5) 

where p = 2/[3(1+ w)] and w = p/p is the ratio of the pressure to the energy density 

at the two’ epochs. In this discussion, the term ‘horizon’ refers to the inverse Hubble 

scale at the times ni and horizon crossing is defined in terms of comoving wavenumber, 

6(n), by the expression i(n) = C(q)fi(n). 
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During inflation, wi z -1 which implies 

[g++z) [&Iv; (3.6) 

It is necessary to derive an expression for 66 at the first horizon crossing. This is 

achieved by varying (3.4) and ignoring quadratic terms in d,@ and d,u. Dimensional 

analysis implies 6(d,@) = J?(M) and 6(d,u) = A&r, so 

6F zz -2(fid,W+ + A(@)fid,&r), (3.7) 

where the field equations (3.1) have been used to simplify the result. The terms 6ip 

and 60 are stochastic quantities arising from quantum fluctuations in the fields. In 

practise, one uses the two-point correlation functions to estimate their magnitudes.32 

However, in this theory the inflaton has a non-standard kinetic term in the action 

(2.7). Naively, one would expect 1601 z fi, but an additional factor is present in this 

expression which arises when the second quantization is performed. In general, this 

factor is given by the inverse square root of the function-coupled to the kinetic term 

of the inflaton. Hence 

16@1 x fi, 164 x A-“‘(@)@. 

By substituting (3.8) into (3.6), we arrive at the final result 

.& E E], z (YIS [;~;$:+~f$]q,,_ 

(34 

(3.9) 

where (L is a numerical constant of order unity and the right-hand side is evaluated 

at the start of the last 60 e-folds of inflation. This is a very general expression and is 

-valid for arbitrary functions {h(Q), V(a)}. 

Two regions may be defined in terms of the relative values of d,q and &d,o as 

Region I - PA < fil+l (3.10) 

Region II - Id& > J;ild& (3.11) 
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In these two limiting cases, the amplitude of density perturbations becomes 

As., x $,,t2~; - 

f& zz 5 p2, - 

(3.12) 

(3.13) 

where the field equations (3.1) have been used. In region II, the evolution of the 

dilaton field, as represented by the @-field, dominates the inflationary dynamics and 

one recovers the results for the original hyperextended scenario.” 

The general formula for the perturbation spectrum in the EH frame can be ex- 

pressed in terms of quantities in the JBD frame with the use of equations (2.5) and 

(2.6). The conformal transformation (2.5) implies that the two-point correlation func- 

tion of the inflaton in the JBD frame is 160) z H, as expected. It is straightforward 

to show that the expression for As is given by. 

As s oA1f2H2 [‘+@!I] (3.14) 

The results of McDonald33 were derived in the JBD frame and they can be compared 

to those of Ref. 28 for the special case of the JBD theory by using Eq. (2.5). For the 

pure JBD theory, Eq. (3.14) reduces to 

As x cxH2 
(1 + 641/214/ + 161 I (1+6~)$+ti~ ’ 

(3.15) 

where e = 1/4w and this is identical to Eq. (47) in McDonald’s paper with the 

translation 

dfdt - (1 + 6e)1’2d/dt (316) 

for the time derivative of the dilaton. Such a change is very close to unity when e << 1. 

Hence the change in Newton’s constant is negligible compdred to the evolution of the 
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perturbations, as assumed by McDonald. (When E 2 l/6, the slowroll conditions 

used to derive (3.1) break down and the derivation of Eq. (3.9) is inconsistent). 

The close agreement between the expressions for the density spectrum in the 

two frames suggests that the conformal transformation (2.5) used to recast the JBD 

theory into the Einstein-Hilbert form may be valid at the semi-classical level in these 

chaotic models. The two results should be identical in the limit as c --) 0. A detailed 

comparison of the two different methods was made by Guth and Jair? within the 

context of old extended inflation in which the inflaton is fixed. These authors extended 

a previous analysis by Kolb et ~1.~’ They also conclude that the technique of conformal 

transformations is valid up to a numerical factor of order unity when e < 1. 

Finally the expression for the amplitude of gravitational waves (tensor modes) 

should also be calculated in the EH frame. One can view a graviton as a minimally 

coupled massless scalar field with two degrees of freedom corresponding to the two 

polarizationstates of the wave. Abbott and Wise36 have deriwd an expression for the 

amplitude at horizon crossing for an arbitrary inflationary solution, so their results 

are also valid for the theories under consideration in this work. Therefore, to a first 

approximation, the equivalent expression for the tensor modes is. 

(3.17) 

To summarize, we have-derived the expressions for the scalar (is) and tensor 

(Ac) modes in the EH frame. For comparison with observatipn, however, we require 

the equivalent expressions in the JBD frame, since we are interpreting this as the 

physical frame. In general, the equivalent expressions As and AG are related to their 

counterparts in the EH frame by an expression involving the cpnformal transformation 

(2.5). The relation therefore depends on the form of h($). However, if the condition 

(3.18) 

holds, and if Q is a function of t only, it is straightforward to show that the scale 

factors and expansion-rates in the two universes are related by 

u(t) = ?-‘(t)qv), H=Rfi. (3.19) 
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Eq. (3.19) implies that i = Gfi z aH = Ic; so the scale dependences in the two frames 

are approximately equal. Moreover, the definition of the energy density, p = gooT~, 

implies 
6i5 6~ -=-- 4E 
UP P fi 

(3.20) 

and we conclude that amplitudes are also equal when 60/R < 1, as implied by Eq. 

(3.18) for dq z f-I-1.37 Therefore, it is sufficient to consider results from the conformal 

(EH) frame directly. 

3.2 The CMBR and large-scale structure 

If particle physics specified the unique inflaton potential, the amplitude As would be 

known for all scales. Because there exist many possible models, however, the ampli- 

tude of fluctuations must be normalized using observations of large-scale structure. 

The CfA survey suggests that the rms fluctuation in the galaxy counts is unity in 

a sphere of radius 8h-‘Mpc and we normalize the amplitude by specifying the ns 

fluctuation in the msss distfibution to be 0s = bi’ within this sphere.53 bs is the 

biasing factor which we assume to be constant over the scales of interest. 

.We shall show in section (5) that the inflationary solutions approximately 60 e- 

foldings before reheating can be expressed as a power law a(t) K tP for p > 1. The 

slowroll approximations are valid in this region of parameter space. It is well known 

that this solution leads to a primordial power law spectrum of scalar fluctuations, 

P(-k) cx A$(k)k 0: k”, where n = 1 7 2/(p - 1) is the spectral index. The spectrum 

of tensor modes has an identical scale-dependence for this solution when n 5 1, i.e. 

AC cc As, and scale-invariant fluctuations correspond to n = 1 (p = co).36 

Equations relating 0s to n havebeen derived using results from the CMBR and 

large-scale structure. l2 The range of parameter space (~g,n) consistent with these 

observations can then be determined. 3g For our purposes, these constraints restrict 

the value~of the effective JBD parameter (2.3) during inflation, 

At present the observation of multipole anisotropies by the COBE DMR exper- 

iment provides the strongest constraint from the CMBR. The root of the variance 

at ~10’ is observed to be o~(10~) = (1.1 f 0.2) x 10e5, where the mean blackbody 
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temperature TO = 2.736 K is taken and limits are to 1-sigma.12 On 10” scales reion- 

ization processes such as Thompson scattering are not important and the dominant 

contribution to the anisotropy is from the Sachs-Wolfe effect when photons at decou- 

pling are redshifted as they climb out of potential wells.4’ For power law inflation the 

observed anisotropy is due to both scalar and tensor modes.42 Following an identical 

procedure to Ref. 40, a numerical fit relating a:(lO’) to n and 0s can be found and 

equated to the observed 10’ variance to yield 

0s = (1.18 f o.2)e2’63(1-“) (3 - n)/(I5 - I3n). (3.21) 

The contribution of the tensor modes arises solely in the rooted factor and it becomes 

negligible as n approaches unity. It has the effect of decreasing 0s for a given spectral 

index, thereby increasing the allowed bias. 

A second result was presented in Ref. 39 based on the IRAS/QDOTL3 and 

POTENp3 galaxy surveys. Quoting a value of 61 = 1.2 f 0.3 at the 2-sigma level for 

-the IRAS biasing factor, these authors deduced that 

Eqs. (3.21) and (3.22) can be combined to yield a bias-independent lower limit on the 

spectral index of R 2 0.84 for consistency between COBE and QDOT. Its is this limit 

which most strongly constrains the JBD parameter during inflation. If Eq! (3.11) is 

valid in the pure JBD theory one recovers the old extended inflationary solution.44 

In this regime the spectra have the power law form discussed above with a spectral 

index 

n=l- 
8 

2w(*) - 1’ 

Consistency with the CMBR and QDOT results therefore requires w > 25 at the start 

of the last 60 e-foldings before the end of inflation. It is important to note th’at the 

constraint due to bubble collisions, w < 18, does not apply here because the phase 

transition is second-order.1g 
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3.3 Nucleosynthesis and solar system constraints 

After the expansion becomes subluminal the most important constraints on the value 

of w and the vacuum energy arise at the nucleosynthesis era and the current epoch 

respectively. The standard model of primordial nucleosynthesis can be used to con- 

strain the vacuum energy density and the JBD parameter at temperatures O(1) MeV. 

Time-varying gravitational and cosmological constants modify the expansion rate of 

the universe and therefore the nuclear reaction rates during this epoch. At tempera- 

tures exceeding the’freeze-out’ temperature TF x 0.8 MeV the neutrons and protons 

are held in local thermodynamic equilibrium by weak interactions.15 In the standard 

big bang picture the neutron-to-proton ratio at T 2 TF is determined by the Boltz- 

mann factor (n/p) = exp(-Q/T), where Q = 1.293 MeV is the n-p mass difference. 

The energy density of the universe is then p = rZg.RT4/30, where ges is the number of 

relativistic degrees of freedom. The nucleons fall out of equilibrium when the reaction 

rate equals the expamion rate of the universe, i.e. 

G&T; x HC+. (3.24) 

The temperature drops below T,Q and free neutrons undergo P-decay until the pho- 

todissociation of deuterium becomes energetically unfavourable at some temperature 

TD. At this point synthesis of He4 proceeds rapidly. 

The abundance of He4 depends crucially on the number of neutrons present at 

TD. There will always be two competing effects in any modification to the standard 

picture. Increasing the freeze-out temperature increases (n/p) and one might expect 

the He4 abundance to be correspondingly higher. However, in many cases it then 

takes longer for the universe to cool to T = TD. More neutrons can undergo P-decay 

and this effectively reduces the He4 abundance. 

When vacuum energy is introduced the second effect is dominant and the observed 

He4 abundance therefore leads to an upper limit on &.I4 From detailed numerical 

calculations it was found that this limit is 

%[lMeV] 5 0.08 (3.25) 

for three neutrino ~peci.4.‘~ 
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There is also a limit on the change in Newton’s constant with time. In the standard 

JBD theory the strength of gravity is higher at earlier times and this increases TF as 

indicated by Eq. (3.24). One therefore expects an upper limit on G/G to exist or 

equivalently a lower limit on w. Casas et al. 45 found w > 250, but by dropping some 

of the simplifying assumptions used to obtain this bound, Serna et ~1.~~ found the 

weaker limit of w > 50. As a first approximation we shall apply this weaker limit to 

the more general scalar-tensor theories under consideration here, i.e. 

w[Q, lMeV] 2 50. (3.26) 

It should be emphasized that this limit is only strictly valid when w is constant for all 

time. Although constraints (3.25) and (3.26) may be weaker than those derivable from 

more exact calculations, they are sufficient to severely limit the scenario discussed 

here, as is shown by the numerical calculations in section 4. 

Finally, constraints on the magnitude and form of the JBD parameter (2.3) at 

the present epoch can be obtained from solar system experiments by using the post- 

Newtonian approximation. In this analysis one considers the time independent spher- 

ically symmetric metric around a point mass m, expanded as a series in the gravita- 

tional potential U = m/r, i.e. 

ds2 = (1 - 2aU i- 2@U + . ..)dt’ + (1 + 2yU)dx2, 

where dx2 7 dzidz’ (i = 1,2,3). Current observational limits on the Post-Newtonian 

parameters are 

LI = 1 f 10-4, (y + 1)/2 = 1 & 10-s, (2 + 27 - 0)/3 = 1 f lo-‘, (3.28) 

whereas general relativity predicts the values o = a = y = 1. Nordtvedtr6 analyzed 

the generalized scalar-tensor theory (2.2), finding that 

and 
1+w 

y=2+w * 
w[&, 31<] > 500. 

(3.29) 

(3.30) 
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It is important to note that w -+ +cc is a necessary but not sufficient condition for the 

recovery of general relativity at the present epoch. We also require from Eq. (3.29) 

that (dw/dQ)/wl + 0 as w diverges. However, this condition is always satisfied when 

the dilaton is located within the vicinity of a turning point in h($), because 

(3.31) 

To summarize, the most important limits are w > 25 during inflation, w > 50 at 

nucleosynthesis and w > 500 at the present epoch. 

4 Numerical Results 

4.1 Initial Conditions 

A number of plausible models were considered by numerically integrating the system 

of equations (2.17)-(2.21) plus (2.23). The analysis does not depend strongly on the 

precise form of h(Q). One only requires that it be at least C2 continuous, contain a 

turning point and be normalized to unity at this point. In this sense the scenario we 

are investigating is rather generic. To ease the calculation we specified 

rk = h($) = sin’P$,, /3 = constant, (4.1) 

because this leads to a simple form for w(a) given by 

1 1 
w(Q) = -- 

23p* 1 - @’ (4.2) 

Although there are no known particle physics models which lead directly ‘to Eq. (4.1), 

it has a simple analytical form which can be viewed as an approximation to a more 

complete theory. Indeed, for small rk one can treat Eq. (4.2) as a perturbation 

to the JBD theory up to terms including 0(lk2). G eneral relativity is recovered 

as Q + 1. Following Linde, the initial conditions were specified by treating the 

quantum boundary (QB) as the mostnatural set of initial conditions for chaotic 
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inflation in scalar-tensor theories. 47 This boundary corresponds to the-hypersurface 

at the Planck density and represents the earliest times at which initial conditions 

can be placed on classical fields. In theory (2.1) the Planck mass is related to the 

dilaton by m$,($) = h($) so the QB is reached when V(ui) % h’($i) = m”p,. There 

is therefore a l-jet family of initial conditions relating the values of D and 11. Indeed, 

the probability that the universe can be created from nothing via quantum tunneling 

is 

P = exp(-3m&(+)/W~)), 

which is only high on the QB.4s 

(4.3) 

In the numerical calculations we employ this argument as a first approximation. To 

be more accurate, though, one should also consider the effects of quantum fluctuations 

in the two fields. Once it has started inflation always occurs at some point in the 

universe if the change in the fields due to quantum fluctuations with wavelength larger 

than H-’ exceeds the classical change in the time interval H-’ due to the equations of 

motion.47 An island universe resembling our own (almost) flat Friedmann space-time 

may only form when such a situation is reversed, and the point of equality is a more 

accurate estimate of initial conditions. 

The evolution of the quantity dlna/dlnt m Ht with respect to the number of 

e-foldings, N = lna, was investigated because this allows a number of interesting 

features to be shown diagrammatically. For example, if the scale factor expands as a 

power law, a cc P, Ht = p = constant and the graph is a horizontal line. On the other 

hand, the exponential (de Sitter) expansion may be written as N = Ht + constant 

and this is a straight line of gradient s/4. The critical solution for inflation is the 

Milne universe, Ht = 1, and the strong energy condition is violated above this line. 

The end of inflation can therefore be defined as the point. where the graph cuts the 

lineHt=l. 

4.2 Decaying Power Law Potentials 

Witten has shown that potentials of the form V 0: o:O, where.0 > 0, can arise when 

supersymmetry is spontaneously broken. 4g The symmetry breaking occurs when the 
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potential has non-zero values. Therefore, one would have a natural candidate for 

the inflaton if D was the field responsible for breaking super-symmetry. In Einstein 

gravity the potential is too steep at small e to lead to inflation, but at large s an 

intermediate inflationary solution a cc exp(FP) is found, where F and Q < 1 are 

positive constantsso 

The question we address is whether inflation at small u is possible in the scalar- 

tensor theory discussed above and the numerical results are shown in Figure (1) for 

a = 10 and p = O.Oi. A power law expansion with p = l/(@) + l/2 arises when 

100 < N < 260. In this region w(9) is approximately constant (Q* < 1) and 

the solution corresponds to that found in the JBD theory when the inflaton is held 

constant. This is the old extended inflationary solution a 0: Pf’/2.44 Hence the known 

results for the form of the perturbation spectra derived when Eq. (3.11) is valid can 

be employed in this analysis and Eq. (3.13) applies. Consistency with the CMBR 

and QDOT results therefore requires b < 0.07. 

Figures (la-) & (lb) 

Unfortunately there is a graceful exit problem in this model. Figures (la) and 

(lb) show how the solution temporarily approaches the Milne limit-as k-2 increases 

and Einstein gravity is recovered at N x 310. At this point the intermediate solution 

takes over where Ht = qN +constant. The gradient of this line is consistent with the 

analytical result a-= 4(q-’ - 1) derived by Barrow.?’ (This provides a useful check for 

the numerical calculations.) Because the de Sitter solution is an attractor at infinity 

in this case, it is not possible to obtain subluminal expansion unless the reheating 

process is highly efficient. Rather than redshifting to zero, the radiation density grows 

during the power law phase due to the continual de&y of c. This is a generic feature of 

these models, but is not sufficient to establish a radiation-dominated phase as required 

by nucleosynthesis. Naively one may think that ti* would increase sufficiently fast as 

\k -+ 1, but it is too small relative to Q during inflation to contribute significantly to 

the reheating. We considered models up to a = 100 and found the same qualitative 

behaviour. 
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4.3 Exponential potentials without dissipation 

We proceeded to investigate the exponential potential V(u) = VO exp( -Am) where 

{VO, X} are independent constants and a2 = g?r. In Einstein gravity this potential 

leads to an attractor power law solution a o( t’/“’ when X2 < 6 and inflation occurs if 

0 < X2 < 2. The attractor solution becomes a cx t’13 for all X2 > 6 and the physical 

reason for this is as follows. In the spatially flat Friedmann model the X2 < 6 attractor 

arises because the kinetic and potential energies of u redshift at the same rate. This 

is the deep reason why inflation can never end in this model. When X2 > 6, however, 

the potentials is too steep and the field becomes effectively massless as V + 0.51 

A number of new features arise when the Planck mass is allowed to vary. We find 

that inflation is possible when X2 > 6 and that the expansion becomes subluminal 

without any fine-tuning. As an example, we discuss results for X2 = 12 and p2 = l/g. 

In Figure (2) the dissipation term CV is removed for all time. The p = w + l/2 

power law solution is again found, thereby implying that the dilaton dominates the 

dynamics. The expansion does indeed become~subluminal and settles around the 

value p = l/2. This result is independent of the value of p and is understood by 

investigating Eq. (2.12). For U = 0 and w approximately constant, this equation can 

be rewritten in the form 

(4.4) 

where V,, is an effective interaction potential defined by the integrability condition 

av,, 1 87r --- 
ark -- 2+)+3T (4.5) 

and T = 4V - ti*. Eq. (4.4) resemble; the equation of motion for a minimally coupled 

field and we may view rk as evolving along its effective interaction potential. During 

the inflationary epoch, V > 6’ and Vef has negative gradient. Hence the values of 

Q and ir2 increase. This means that T, and therefore aV,~/iN-, eventually change 

sign as 4V - ir* passes thro ugh‘zero, thus causing the dilaton to slow and reverse its 

motion. Hence, there exists a damped oscillatory behaviour around 4V = ir* and some 

constant value of GJ. The theory soon resembles a resealed version of general relativity 



with a traceless energy-momentum tensor; the solution is therefore equivalent to the 

radiation-dominated universe a N ti/*. 

Figures (Za) % (Zb) 

Hence, the effect of a varying Plan& mass is to change the attractor for steep 

exponential potentials from p = l/3 to p = l/2. The above argument should apply 

to any steep potential for which T < 0 in Einstein gravity. Including an uncou- 

pled radiation component will not alter the argument since its energy-momentum is 

identically traceless and does not affect Vef. 

4.4 Exponential potentials with dissipation 

In Figure (3) the dissipation term is included for all time. Figure (3~) shows the 

radiation density growing during inflation and a sufficient reheating temperature for 

baryogenesis to proceed is easy to obtain in this model.-Moreover, from Figures (3b) 

and (3d), it is seen that the radiation begins to dominate once Einstein gravity is 

recovered and the dissipation prevents the quantity 4V - ir* from passing through 

zero. However, a new scaling solution is found, where pa/prd = constant, as is shown 

in the late time behaviour of Figures (3a) and (3d). 

Figures (3a) - (3d) 

This solution may be derived analytically for the special case where CV is constant. 

We consider a model in which a particle species X, with equation of state p,f = 

(y - l)px for some constant y, is coupled to the inflaton through an interaction 

px m l?xir2, where TX is constant. The Bianchi identity and Friedmann equation for 

this system are 

(1+ 2lYx)ii + 3(1+ yrx)Hir + v, = 0 (4.6) 

3H2 = n*(p,, + px) = t? [(~+r,)2+v], (4.7) 

where pv represents the inflaton energy density and we assume Einstein gravity holds. 

By differentiating Eq. (4.7) with respect to cosmic time and substituting Eq. (4.6) 
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for ii we arrive at the ‘momentum’ equation 

19 = -$l+7rx)b2. (4.8) 

This implies that Eq. (4.7) may be rewritten in the Hamilton-Jacobi form by-defining 

a new time coordinate 
-L 

t=-;(1+7rx)rdlr'($ (4.9) 

We find 2 
3d(1+ gX)2HZ -2(1+2rx) = n4(l +yrx)*v, (4.10) 

which yields the attractor solution 

H = &exp (-Xno/2), Xtc0=21n[2(~~~x)t], (4.11) 

where A is a positive constant. Hence the scales factor grows as a power law a CC tP, 

where 

p= &+7r,). (4.12) 

(When r,v -) 0 we recover the standard power law solution with p = 2/X*). The 

contribution of X to the matter content of this universe may be expressed through 

the quantity QX E n2px/3H2 = px/(px + pv). For the solution (4.11) we find 

fix = rxX2 
3u + 7rx)2 

is constant. implying Eq. (4.11) represents a scaling solution and the matter and 

radiation densities redshift as pv cc px cc t-’ 0: o-*/P. Moreover, by substituting Eq. 

(4.11) into Eq. (4.13), the condition V, > 0 implies this attractor exists only if 
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The nucleosynthesis constraint (3.25) then implies TX > 23/4 which yields the lower 

limit X2 2 36. 

In principle this result suggests the nucieosynthesis constraints can be satisfied in 

this model if X2 is sufficiently large. However, if the dissipation is not removed, the 

scaling solution will survive through to the decoupling era. Numerical results have 

shown that the lack ofobserved spectral distortions in the CMBR imply Rv < 4 x low4 

if the vacuum decays into low energy photons. I4 For consistency, Eq. (4.14) then 

implies X2 > 0( 103), which is clearly unrealistic. In -any case it is physically reasonable 

to suppose the dissipation becomes negligible once the effective inflaton mass falls 

below the rest mass of its decay product. Naively one would expect the vacuum 

energy to rapidly redshift to zero at energies below this mass scale, with the radiation 

density falling as a-*. In general relativity this would be the case, but the evolution. 

of the Planck mass again significantly alters the arguments, as shown in Figure (4). 

Figures (4a) & (4bj 

As soon as the dissipation term was removed the vaduum rapidly dominated the 

universe once more. This feature arises because the peak of reheating occurs while 

the dynamics is still dominated by the dilaton’s motion. The dilaton viscosity still 

slows the inflaton and thus its energy density does not decay as fast as it would in 

Einstein gravity. On the other hand, the time-dependence of the Planck mass does 

not affect the radiation, which still decays as pP oz oe4. This follows because the 

energy-momentum tensor of the free radiation field is traceless and does not appear 

in the dilaton field equation (2.12). We suggest that this qualitative behaviour should 

not depend too strongly on the precise form of the potential unless V(o) is very steep. 

In this case, though, the vacuum energy would be insignificant at the present epoch. 

The same qualitative behaviour was observed for values of w = 500 (p = 0.0158). 
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5 Conclusions and Implications 

The philosophy behind this work was to identify a decaying cosmological constant 

at the present epoch directly with the vacuum energy which drove the inflationary 

expansion without altering the form of the potential. This would solve, without 

severe fine-tuning, the cosmological constant problem and could provide a possible 

explanation for a-number of observational results. The limiting solution for acceler- 

ated expansion, a K t, arises when the vacuum energy density varies as pv o( a-‘. 

Hence, pV must redshift faster than am2 if inflation is to end, but must decay slower 

than the pressure-free matter component, pmatter 0: oe3, if it is to dominate at late 

times. This requires viscosity to be present at early times. We derived expressions 

for the amplitudes of scalar and tensor fluctuations with a general inflaton poten- 

tial and scalar-tensor theory, and the strongest constraints on any model arise from 

the CMBR, primordial. nucleosynthesis and solar system observations. These con- 

straints are important in any scenario of this type. In general, it is difficult (if not 

impossible) to satisfy these constraints simultaneously if the viscosity arises due to a 

time-dependent Planck mass. 

We considered two simple forms for a steep potential, V cc o-“ and V 0: exp( -Xc). 

In the former a graceful exit problem arises for realistic values of a. The latter is 

more promising and;a number of scaling solutions were found both numerically and 

analytically. In particular, inflation occurs and ends naturally when X2 > 2. This 

model leads to a power spectrum consistent with observation, but the vacuum does 

not decay sufficiently fast to satisfy the nucleosynthesis constraint (3.25). It also ap- 

pears that this constraint cannot be satisfied for very steep potentials, which decay 

rapidly to zero in Einstein gravity, because the Planck mass is still evolving during 

reheating. This causes pV to redshift at a much reduced rate relative to the radiation 

component. 

To summarize, the scenario as outlined in section 2 is not viable for the examples 

considered here and requires more complicated potentials and further extensions. 

However, with this numerical code, it is possible to develop working hyperextended 
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chaotic models based on the theories discussed in section 2 if the steep potential has 

a minimum. One extension to this analysis is to investigate any effects a dilaton self- 

interaction potential V($) may have. .Alternatively one could consider more general 

couplings of the dilaton and inflaton fields in action (2.1) or alter the form of the 

dissipation term CV which models the reheating process. 

These results may have implications for the joint evolution of the comological and 

gravitational constants. A present-day vacuum term may arise if 

1. The inflaton settles into a minimum of its potential at V = 0 and a second 

scalar field is located in a non-zero minimum of its own potential. 

2. The global minimum of the inflaton potential is located at V # 0. 

3. V(a) decays monotonically for all time. 

The third possibility is the most attractive, but based on the above numerical 

calculations, one may conjecture that the vacuum will generally not decay sufficiently 

fast relative to the relativistic matter if mpr is time-dependent during and shortly 

after inflation. Our analysis therefore favours a reheating process via oscillations of 

the inflaton about some minimum if the Planck mass varies with time, but it does 

not rule out other possibilities. This agrees indirectly, and for different reasons, with 

the conclusions of Ref. 52, in which a detailed quantum mechanical description of 

the reheating process was given. These authors concluded that particle production is 

only significant during the oscillating phase of the inflaton. (A direct comparison of 

conclusions cannot be made, however, since these authors only considered reheating 

in Einstein gravity, whereas the dilaton is still evolving during reheating in the models 

discussed here.) 

Conversely, if one prefers a continually decaying potential, this suggests a constant 

Planck mass is required. In any case, it appears that some degree of fine-tuning is 

necessary if a cosmological constant arising from the inflaton potential is to be non- 

zero at the present epoch. 
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Figure Captions 

Figure 1: Numerical solutions for the potential V(u) = 10-lOa-lO, with /3 = 0.07 

and initial conditions ir = \k = 0. The dissipation coefficient f = 1.0 and the rest 

mass of the decay product X is mx = 10’ GeV. Figure (la) illustrates the evolution 

of the power index of the solution. Power law and intermediate inflationary expansion 

is observed, but a graceful exit from the inflationary regime is not found. Figure (lb) 

illustrates the evolution of the w-parameter in terms of tar-‘w(Q). The intermediate 

solution takes over once w diverges to infinity (i.e. tan-‘w + +?r/2) and Einstein 

gravity is recovered. 

Figure 2: Numerical solutions for the potential V cx exp(-XKrr) with X2 = 12, 

0 = l/8 and initial conditions 6 = & = 0. Dissipation effects have been removed 

and f = 0. Figure (2a) shows that inflation is possible and ends naturally as the 

expansion becomes subluminal. The expansion approaches the attractor p = l/2 

as w(G) settles to the constant value in Figure (2b). A resealed version of general 

relativity is recovered but the Planck msss is smaller than the currently observed 

value. 

Figure 3: The same conditions as in Figure (2), but with p = 0.025 and f = 1.0. 

The vertical dashed line measures where the expansion becomes subluminal. Figure 

(3~) plots the evolution of the radiation density (p,) and the inflaton energy density 

(p-). Figure (3d) plotstthe ratio of the inflaton energy density to the total energy 

density. The effects of dissipation are included for all time. A new scaling solution 

is found once Einstein gravity is recovered, but this violates spectral distortion limits 

on the CMBR. 

Figure 4: As Figure (3), but the dissipation terms are removed at mx = IO’O GeV. 

In Figure (4a) the inflaton rapidly dominates the expansion after the dissipation is 
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removed. This follows because the dilaton is evolving during the reheating, as shown 

in Figure (4b) by the evolution of w(Q). 
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